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where 

lib - YiB + ziy lid -!- v,fJ’ + ziy .Tp” + r/p -+ ZiV” 
.4 ,B’G 

=1,3 = h1.t fIGi f ?5-), l/l,S = h,, (Y’Z r 1’a 
%,s = klP i &,) I% + i&a f g3 I‘% 

g* = ‘i? kll + Bar 1 * ha. z, = Y, = 0. % = i 

Since 1 = n(A,+ La), U = --ah,&, thecharacteristic functionsare Q)1,5 --: &,,z+ h&,,-f, ctt,= u-f, 
The regions where motion is possible &if,= (Q),>IO)r)((PI<~o) are bounded by the surfaces 

(b,,, = const) and are determined by the disposition of the roots of the quadratic trinomial 

a??+&-- with respect to the intervals [C,A] and I--A,--Cl. 
The critical points of the characteristic functions are defined by the equations 

0 = &$ = (2ah,,a + h) Ii),,,, 0 = d@t, = dU 

The conditions dC = 0, di;,,, = 0 provide the points ~_.,,s,~\)e~,~,~, determined earlier, and 

the conditions &~i.,,~+ h= 0 define new sets of critical points that is, the surfaces 61 3 = , 
const} . To the critical zero level of the characteristic function Q,Jfh there corresponds the 
constant quantity b, equal to the multiple root of the trinomial a?.*+ hL in the interval 
rc,a1. This trinomial is positive on I-A.--Cl, i.e. everywhere we have ~t,lfrr>or and 
hence MJh is empty. On the critical zero level (l,=const) of the characteristic function 

@a lfh we similarly have @,,(f,,>O, i.e. Mfh == (h, = con&). 
By the second theorem in Sect.2 this surface &ifh consists of the trajectories of the 

problem on which the velocity Y= owQ. o== hf2(h- v)Iw,I-'. 
Using the integral G, we obtain the function of positional variables G(OW~) that are 

functionally independent of A,. Since on these trajectories G(ow~) = cow, A,= const, they are 
closed curves and the motions on them are periodic. 

The author thanks V.G. Demin for his interest. 
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NON-LINEAR ANALYSIS OF THE STABILITY OF THE LIBRATION POINTS 
OF A TRIAXIAL ELLIPSOID* 

1.1. KOSENKO 

The stability of libration points of a triaxial homogeneous gravitating 
ellipsoid rotating around one of its principal central axes of inertia is 
studied. The plane motion of a passive point of unit mass is considered. 
In parameter space a region of stability is constructed anal, also, resonance 
sets for all the resonances investigated. A systematic analysis of the 
stability of a libration point is carried out, using respective theorems 
for the equilibrium positions of Hamiltonian systems with two degrees Of 
freedom. 

A qualitative investigation of the geometric structure of the stability region wascarried 

out in /I, 2.l. 
If the ellipsoid is a figure of revolution around the central polar axis of inertia ill, 

the relative equilibrium positions are not isolated and fill a circle in the equatorial plane. 
If, however, the equatorial semiaxes are different, the ellipsoid may have up to four isolated 
positions of relative equilibrium. The conditions of existence of libration points external 
to the ellipsoid in this problem and, also, the canonical equations of motion in the 

*Prikl.Matem.!4ekhan.,49,1.,16-24,198s 
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neighbourhood of the equilibrium position investigation were obtained in /l/. A suitable space 
of the mechanical parameters of the problem was introduced and utilized in /l, 2/. 

1. ne stability region. The equations of motion of a passive point in the neighbour- 
hood of relative equilibrium have the form 

ql' = lipi, pi' = -Hgi (i = 1,2) (1.1) 

in which the Hamiltonian is expanded in the power series 

H (9, p) = Hs (qt PI + Hs (qv PI + H, (qv PI + . . . (1.2) 

The homogeneous forms Ht(q, p) (k = 2,3,4) are represented here as follows: 

HP (4, P) = b,ood + boo,w, + baooq2 + honow, 4 

hoo*oP? + kooot?G 

(1.3) 

Hs (9, P) = ~,oooq,a + h,ooq&, Ha (qt PI = boooq,’ + 

~**00!?,%2 + ~O‘Oo43’ 

The coefficients of the Taylor series, which will be subsequently required, are calculated 
in the form 

h pooo = -(cpz + ‘pdl(2v~,), hloo, = -1, hozoo = (~J(29,) 
h ono = 1, ho,,, = hooop = =/p 

hhpooo = (WV + ~&?)~(3gGV3)1 hmoo = UcpMB3) 
,000 = -Eol(i/fV + i/IV)2 + 2(U3*4 + w,')l~(~%J,B,B,) 

h,,oo = 50(3W + WW~(2rp1B~~fM~ koaoo = -5d(4v~A~Pd 

fii = (Y + CCi)“’ (i = 2, 3) 

(1.4) 

where the mechanical parameters of the problem are al, a2, v (the parameter space is three- 
dimensional). The remaining quantities aa = 1 -a,- a*, v = Eo* - a1 depend on them. Here 

is the square oftheequatorial semiaxis of the ellipsoid on whose continuation lies the 
ribration point investigated here /l/, a, is the square of the equatorial semiaxis, aa is 
the square of the polar semiaxis (a dependent parameter), and to is the distance from the 
centre of the ellipsoid to the libration point. All the quantities are dimensionless. 

Later the following elliptic parameters /l/ will be required: 

+- 

%= j ((ai+ a)+l(al +U) (a2+ U)(a3$ u)l-'*ldu (i=1.2,3) (1.5) 

The parameter space of the problem is a prime defined by the formula 

IJ3 = {(al, az,~):al>0,a2>0,a,+ap<1.~~>0} 

The normal oscillation frequencies of plane motion are 

(1.6) 

The qualitative results in /l, 2/ enabled us to construct subsequently the exact stability 
region and the resonance surfaces (Fig.1). Formulae (1.7) and (1.5) define the mapping Q: 

(al3 a2, T)++ (01,02) of the parameter space II9 onto the particular space R+? = {(o,, o&: 0~2 

0, o2 > 0). In R+2 the stability conditions of the system, to a first approximation, have the 

form O< w,< ol, ~0~2 + w2*<2 (Fig.2) and determine the set Z c R,*. We denoteby St= Q-l(Z) 

the stability region in r13. The length of the arc aI2 -j-o, * = 2 correspond to the condition 
h=@ or (c'~=O. From the mechanical meaning of the problem it is clear that always v~> 0 
(since the quantities ai>O, i=l,2,3). This inequality leads to the relation ~0~2 +o,*( 2. 
The sets that correspond to one another in the mapping Q:lP +R,2, 
and 2 by the same numerals. 

are indicated in Figs.1 
The resonance surfaces I 

(ol = ml), third (or = 20,), and fourth order (oi = 302) 
- 4fFig.l) of the first (me = O), second 

lines I- 4 (Fig.2). 
correspond to the resonance straight 

5 (Fig.1). 
The preimage of double resonance (al = aI = 0) is the rectilinear interval 

Let us determine the boundary of the stability region 
consists of the following: 

StC II3 (in topology na). It 
l)semi-infinite section S1 (set 1) of the plane a,= eI, bounded 

by straight lines: 5; or = aI= iJ2, a1 = a2, T = 0,and 
resonances, 2) surfaces of second-order resonances SI 

a1 = at= 0 are surface of first-order 
(set 2); and 3) the interval of double 

resonance or = up= 0. In addition we shall consider surfaces Sa and S, of the third-and 
fourth-order resonances (the sets 3 and 4 in Fig.1). 
stability of the resonance set So = St\ (S, u S,) 

Obviously SII c St and S,c St. The 
will be separately checked. The coordinates 
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Fig.2 

of the points 6-10 (Fig.1) calculated in n3 are 
(0.43 . .; 0.43. . ; O), (0 5; 0.5; 0.240s. . ), (0; 1; 

6.2308. ). (0; 1; IO, 2799...) (0; 1; 19, 0293...). 

2. The first-order resonance. The first- 
order resonance oocurs only at the boundary of the 
stability region to a first approximation and corres- 
ponds to the case of the second zero frequency os = 0. 
Hence at the boundary S1, including the interval 5 of 
double resonance, the equation g = 1 holds, from 
which 'cl = (F~. This in turn leads to the conclusion 

Fig.1 that for the first-order resonance we have an ellip- 
soid of revolution with equal equatorial semiaxes 

a, = a%. The libration point, if it exists, is not isolated. The relative equilibria occupy 
the entire circle of the equatorial plane, and in the inertial frame of reference are solutions 
of the equation of motion of a satellite in a circular orbit. 

Such solutions are generally Lyapunov unstable, if all phase variables are taken into 
account. This is due to the systematic shift along the equatorial orbit longitude. Because 
of this, the stability of circular orbits is usually investigated for some of the variables 
/3/. In the present paper the stability of the libration point means the stability of the 
position of relative equilibrium in a rotating system of coordinates or the stability of 
periodic motion over all phase variables. 

For example, following /3/ it is possible to check that for any ellipsoid of revolution 
there is a shift along the circular orbit longitude. Hence we may conclude that in the case 
of a single zero frequency 02 = 0 for first-order resonance (also for double resonance 
01 = o* = 0). the libration point in this problem is always unstable. 

3. The second-order resonance. We shall carry out a non-linear analysis of the 
stability for (a,. at, v)E S, as in /4, 5/. The equations of plane motion in the neighbourhood 
of a libration point using local canonical variables may be represented in the form z' = IH,, 
where z is a four-dimensional vector z = col(ql. q2, pl, p2).and I is a simplectic fourth-order 
matrix I? = -_E. The Hamiltonian function is represented as in (1.2) in the form of the 
series 

H (z) = H, (z) + Ha (z) $ 

It can be shown that on surface Sp of second-order resonance (the case of equal fre- 
quencies or = op= 0) the minor Al,, of the matrix I (Ha),,- ioE (the first row and the fourth 
column are deleted) is non-zero. Hence, when (aI. al, V)E S,, the eigenvalue iw has a non- 
prime elementary divisor. Accordingto/4/bya linear canonical transformation z = NZ (Z s C’Jl(Q:, 
QI, PI, Pp) the Hamiltonianfunctioncanbe reduced toformsuchthatthehomogeneousformofthe 
lowestorderof Hz canbe representedas follows: H,(z)= Fp(Z) = (PI2 +-Paz)/2 i-0 (QIPP- Q81) 

where the frequency is defined by the equation 0 = (1 - h/2)'/'. The matrix of simplectic 

transformation has the form 

N = (a,,)( i,j = 1, . . ., 4), a11 - 

The remaining 
by the equation 

-l/(1 + a)')', a** = li(1 - ap, a*1 = a/(1 -I- a)“* 

as2 = --a/(1 - a)“‘, aas = -(2-a*)/{2[(1 - a*)(1 - Q)l"'} 
a,, = (2 - a*)/{1(1 - Q2)(1 .+ a)]',*), a23 = U/{2[1 - a')(1 - Q)l"') 

Qld = -Q/{2[(1 - a')(1 + a)]"'), Q = (h/2)"' 

elements of the matrix N are zero. The transformed Hamiltonian is defined 
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F(z)=F* (Z)+ F*(Z)+..., J’,(Z)ei +i+~~j,~kfi,~~~,QI'~Q~~P1'~P~" (3.1) 

where Fk (Z) are homogeneous forms of power k. By a non-linear normalizing transformation 

Z++I; the Hamiltonian function can be reduced to the form 

n(6)=+ (1112 + r122) + ~(bl*- Enqd + A (El2 + E*2, + &m 

lr=h 

The following theorem holds /5/: if A > 0, the equilibrium position is Lyapunov stable, 
and when ..4 (0, it is Lyapunov unstable. 

Formulae obtained in /5/ must be used to calculate the coefficient A. A computer check 
showed that for any (a,, a2, v)E S, the quantity A > 0, and hence the libration point is 
Lyapunov stable. 

4. Third-order resonance. The set in parameter space where resonance relations for 
third-order resonance are satisfied,isnon-empty, andas alreadyindicatedinsect.1, isdefinedby 
the equation S* = R-'{(ol, 02):01 = 2o,)(s, is a surface in space n*). 

Like any layer in St defined by the equation 

sh.+r = R-'{(o,, o*) : co1 = ko,, k > 1, k E R} (4.1) 

the surface S* is projected one-to-one on to the plane of parameter (al,a2) (in Fig.3 this 
projection is shaded). The interpretation of results of stability investigations in cases of 
resonance is clear and convenient, since it is possible to talk about this prooperty in terms 
of the values of the two equatorial semiaxes of the ellipsoid. We present in the same way 
the diagram of the stability and instability regions of the fourth-order resonance. It is 
thus possible to judge the stability of the libration point by the form of the ellipsoid. 

Later we shall have to study the problem at inner points of the region St. At the 
boundary of St the investigation has been completed in Sects.2 and 3, since FrSt= S1 U S, U 
Z 121 where 'Z12 is the rectilinear interval 5 (Fig.1) of double resonance (ur= o2 = 0, determined 
by relations a1 - a*, (l- c)v + 1 = (2 + c) arwhere c is the solution of the equation 

I(1 - c)/c]'/~ + lc (1 - c)W = arcctg [c/(1 - c)]'/l 

Region St does not contain resonances of the first and second order, and the roots of 
the characteristic equation of the first approximation are simple and purely imaginary. Hence 
a linear canonical transformation of system (1.1) exists of the form z = NZ that reduces 
the quadratic form of expansion (1.2) of the Hamiltonian to the form 

H, (2) = H* (NZ) = F* (Z) = q(Q12 + PI*)/2 - 02 (Q**i- P*V2 (4.2) 

(see, e.g., /6/) . It can be shown that the simplect .I 

., 4), where only the elements 
c matrix N has the form .I‘ = (aii)(i, j = 1. 

I a.2 

Fig.3 Fig.4 

a 13 = (1 - g -t o,*)Y-- o,B,)'% a14 = (1 - g + o,*)l(o*B*)“~ 
up1 = -2 (--o,/B,)‘:~, a2.t = 2 (O*,/B*)'i~ 
a 3, = (1 -t- &? - 012) (-OJBJ"', a** = -_(I + g - 0,')x 
(oJBp)"* 

aaJ = (1 - g? - q*)/(- colBl)'~* a,, = (1 - g - ozp)l~~,B,)('* 
Bj = 3 - 2g - g* + 2 (g - l)‘q2 - o,J (i = 1, 2) 
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are non-zero. The transformed Hamiltonian function is defined by (3.1). We further reduce 
the cubic terms in (3.1) tothenormalform. * (*See Sect.3,MarkeyevA.P. and Sokol'skii A.G. 
Some Computational Algorithms for Normalizing Hamiltonian Systems. Moscow. Preprint Wo.31, 
Inst. Prikl. Matem. AN SSSR, 1976.) 

We will transfer complex canonical variables using the formulae 

Let us obtain the new representation of the Hamiltonian function 

F*(Z) = n, 15, 3 = im,E1n1 t- ioPs*%~ To normalize the third-order terms -- 

(its quadratic part) 
it is necessary to 

solve the operator equation UI', = G,-- A,, where the differential operator is determined 
using the Poisson bracket 

Gs (f, q) = pa (Z) 

where T, is the third-Order form in the expansion of the generating function of Lie trans- 
formulation in the Hori method, and K,is the normal form of the third-order Hamiltonian. 
In K, only the resonance terms K,(f,$= K&1~z2 4 Koa&% remain, and Klocp = itfoot - foslo - 

We obtain the following result /6/. If the Hamiltonian function is such that jKIool 1 = 

~Ko*~Q /#O, the libration point is unstable. When 1 K,,,, f =0 and the conditions of the 

Arnold-Moser theorem are satisfied (see Sect.61 (the third-order resonance does not in this 
case impede further normalization), we have Lyapunov stability. 

A computer check showed that everywhere on Ss the condition of instability is satisfied, 
except along the curve whose projection 1 is shown in Fig.3. Along that curve the resonance 
terms which impede the stability do not exist in the expansion of the Hamiltonian, and the 
fourth-order resonance is not satisfied. Hence the normalization required by the Amold- 
Moser theorem f7/ is possible. A check proved that according to that theorem the libration 
curve 1 is stable. 

5. Fourth-order resonance. Let us investigate the stability of the libration point 
of the parameter set SJ (see Sect.1). As in Sect.4, we will interpret the results not in a3 
but in the (CQ, at) plane where the surface S, is projected one-to-one (the shaded region in 
Fig.4). When the fourth-order resonance relation CO) = &*J~ is satisfied (in this problem of 
plane motion there is not other resonanceofthis order) to analyse the stability we have to 
reduce H to the normal form up to the fourth order inclusive. 

It is assumed that the Hamiltonian function is reduced to the form 13.1), where F*(Z) 
has the form (4.2). As noted in Sect.4, this can be done using a suitable linear canonical 
transformation. 

Let us change to canonical polar variables, using the formulae 

Qh = @r,)':i sin q,:, P,: = (2rh-)':s co3 gk (li = 1, 2) 

In the new variables the Hamiltonian has the form 

(5.1) 

where Uh,hV(vt, cp,) are trigonometric polynomials calculated in terms of respective coefficients 
of the forms F, (see below). Since there are no third-order resonances, the Hamiltonian has 
the following normal form, obtained after the non-linear canonical exchange of variables (rl, 

~2, %r cpo) ++ (pi. PZ. zc‘l, 9%): H = G, + G* i R -j- . . . . Terms in the expansion of H of order higher 
than the fourth are omitted, and 

6% = O,P~ - wipl, G, = C,OP,* -t- C~P,P, -I- Cod 

The resonance term for commensurability o1 = 30, has the form 

(5.2) 

Let us determine the quantities a LI C,, + 3Cn i- %OS, b = 3 I3 fAra” -!-B,,z)1”3. The follaw- 

ing Markeyev theorem holds /6/. If the Hamiltonian of perturbed motion is such that {a /< b, 
the equilibrium position is Lyapunov unstable; if however IsI>b, it is Lyapunov stable. 

To verify these conditions it is evidently necessary to determine the coefficients of 
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the functions G, and R. The coefficients of the resonance term are calculated using the 
following series of formulae: 

AIB = a,'%% - cQY8, B,* = &'V2 - #I*'?@ f5.3f 

aa13 = 2do1($$ + y$ + 24~ (3&z + I*~:%) $ fd,, - d-I,~j $:1”9 * :! 

&” = 2i.& (6:;: f 6:;:) + 24, (36:;: t 6;:;) + (dtl- d-I,,) 6:::: .2 
,,,t ;$; cT @.b;‘A + ,~k$W, ,Cji ;,$; = _ a~k$$‘“’ 1’ @“lb;, I 

Let us determine the quantities da,,+* (qo,- n,ct$~, The quantities a,Lz'a and &8j"l", are 
coefficients of trigonometric polynomials U*%,, (qj, B)P) and U,,&&, qef respectively. The 

formulae used to obtain the coefficients of the form Gl are also applicable for normalizing 
in the non-resonance case up to the fourth order inclusive. Hence they will be used to check 
that the Arnold-Moser conditions in Sect.6 are satisfied. These formulae are 

(5.4) 

pi, k,k*= (&*a)2 + (bpkm)8, pi; i,c I #a,?"4 + #"b;'" 

The quantities aiao, btsD, c~%,,~*, 
UlO, Ii*%, tlar. 

are the coefficients of trigonometric polynomials UbO, 

In all equations (5.3) and f5.41 the quantities +t, &i"*fI*. es_?4 axe explicitly expressed 
in terms of tithe coefficients of the WamiXtonian power expansion by the formulae 

The xesults of a computer check that the conditions ofMarkeyev's thearem are satisfied 
are shown in Fig.4. The instability region {more exactly, its one-to-one projection on the 
plane (a,,&) is indicate& by cross-hatching. To investigate the stability along the curve 
separating the instability region from that of stability on the surface S, it is necessary, 
in the expansion of the Hamiltonian, texms of power higher than the fourth. 

The above analysis shows that when the fourth-arder resonance is satisfied in this 
problem, loss of stability occurs only when a,<a,, i.e. when the ellipsoid is ablate. With 
the compression increases the libration point remains unstable. 

5. The non-resonance case. The set S,, corresponds to this case (see Sect.1). Note 
ihat as v-+ GO this set is not bounded in IF. Since it is three-dimensional, it is con- 
venientto, carryoutthe analysison sections of S, by planes Y = const(v> 0) and observe 
the variation of the stability conditions as v changes. The basis of this analysis is the 
Arnold-Moser theorem. Sf there are no resonances up to and including the fourth order, it is 
possible by a suitable canonical change of variables to reduce the Hamiltonian function to 
the form 

where &.Qt (i = 1,2) are canonical polar coordinates and the homogeneous forms G, and G* are 
determined by (5.2) _ Then, by the Arnold-Moser theorem, the equilibrium position of the 
Hamiltonian system (the libration point) is Lyapunov stable, if 

Y(al, a*, v) = CNII~~ -t- Cllo,oe -I- COZO,~+ 0 



A check showed that, when there are no resonances (inregion sp) the stability of the 
libration point in plane motion OCCUrS ~34~ all points 80% except at points lying on the surface 
r. The set r is boundc?d and contained between the sets sB and spA Calculations s&owed that 
on r the function W = 0, and that the quantity W changes its sign on passFng through T‘. To 
investigate the stabr-ility on the SUrfaCe r = 8% %I VI: v fa,, CL%, v> = 0) ft is necessary 

to use in the power expan$ion of the Hmiltonian, terms of order highor than the fourth. On 
the set (J&t% (l<k < 2) the function v-2 0. In pElsSing through the surface Sa the third- 

order reson&nnce function W changes its sign, and has a discontinuity of the second kind on 

s In ths subregion So bounded by the surfaces Ss and ??? 
on3 ‘passmg through f, 

the quantity W is negative. Then, 
it again chanqes its sign and remains positive in the remaining part 

AI-J idea of the disposition of r in So can be obtained by considering several sections 
&Y&(V) = {(cc,, CXO, v'): Y' = V)" Four typical cases are possible, corresponding to four intervals 

Fig.5 

“9: a < Y CT: VP, Vi < v < V#l (i = 7, 8, 9), where vi(i = 7,8,9, IO) arerema~enessparameCers of 
paints of f19 numbered 7-U (Fig-l). These cases are represented in Fig-S, where the numerals 

f, 2,3, 4 denote the Curves of intersection of Sa@j With the surfaces r, &, Sz, $I, respect- 
ively. Note that when %'>Q> and thexs are no resonance points in sections SorCJ the 
section S,~~~ fl TT is also empty. Thus in plane motion a reasonably remote libration point is 
always sta.ble. 

The author thanks V.G. Demin for suggesting the problem and for his support, and A.G. 
Sokol'skfi for the material provided for use in Sect.5. 
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