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( za—yB+zy  re Lyp oy re’+yp 4zt )
A : B ' C

where — — —_— —_
fs=h (Vo V), ns=h, VaFVe
B = (g F ) VI, + (Gt e VE
g =Vagut )ty m=1h=0 n=1
since 1 = a (M + Ag), U = —alk,, the characteristic functions are ;5 = ahy s + khy 3 — f, By = U — f.

The regions where motion is possible My, = (@, > 0} ) {®s < 0} are bounded by the surfaces
{M,3 = const} and are determined by the disposition of the roots of the quadratic trinomial
ak? + kA — j Wwith respect to the intervals [, 4] and [—4,—Cl

The ¢ritical points of the characteristic functions are defined by the equations

0= ddy 5= (Qah,3+ b dhy g 0= 40, = U
The conditions gl = 0, di,3 = 0 provide the points uy p cle;.s determined earlier, and

the conditions 24k, ;+ k=0 define new sets of critical points that is, the surfaces (k=
const}. To the critical zero level of the characteristic function @}, there corresponds the
constant guantity A; equal to the multiple root of the trinomial  aA? 4 ah in the interval
ic, Al This trinomial is positive on [—4.-C}, i.e., everywhere we have @&,l,>0, and
hence M;, is empty. On the critical zero level (i, = const} 0f the characteristic function
Dy, we similarly have @i >0, 1.e. My, = {A; = const}.

By the second theorem in Sect.2 this surface My, consists of the trajectories of the
problem on which the velocity v = ow, 0= 1+V2Th — V)|ws|

Using the integral G, we obtain the function of positional variables ¢ (uw,) that are
functionally independent of i, Since on these trajectories ¢ (ow,) = const, hy = const, they are
closed curves and the moticons on them are periodic.

The author thanks V.G. Demin for his interest.
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NON-LINEAR ANALYSIS OF THE STABILITY OF THE LIBRATION POINTS
OF A TRIAXIAL ELLIPSOID

I.I. KOSENKO

The stability of libration points of a triaxial homogeneous gravitating
ellipsoid rotating around one of its principal central axes of inertia is
studied. The plane motion of a passive point of unit mass is considered.

In parameter space a region of stability is constructed and, also, resonance
sets for all the resonances investigated. A systematic apalysis of the
stability of a libration peint is carried .out, using respective theorems

for the equilibrium positions of Hamiltonian systems with two degrees of
freedom.

A qualitative investigation of the geometric structure of the stability region was carried
out in /1, 2/.

If the ellipsoid is a figure of revolution around the central polar axis of inertia 1/,
the relative equilibrium positions are not isclated and fill a circle in the equatorial plane.
If, however, the eguatorial semiaxes are different, the ellipsoid may have up to four isolated
positions of relative equilibrium. The conditjons of existence of libration points external
to the ellipscid in this problem and, also, the canonical equations of motion in the
*prikl.Matem.Mekhan.,49,1,16~24,1985
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neighbourhood of the equilibrium position invgstigation were obtained in /1/. A suitable space
of the mechanical parameters of the problem was introduced and utilized in /1, 2/.

1. The stability region. The equations of motion of a passive point in the neighbour-
hood of relative equilibrium have the form

g’ = Hpy pi’=—Hy (i=12) (1.1)
in which the Hamiltonian is expanded in the power series
H(g,p)=H:(q,p)+Hs(q,p) + Hi(qop) + . .. (1.2)
The homogeneous forms H, (q, p) (k¥ = 2, 3, 4) are represented here as follows:
Hy (4, P) = Reoooqa® + P100191P2 + Rozooge® + Hornogeps + (1.3)

RoozoP1® + Poooads?
Hj (q, P) = hsooods® + F12000202% Ha (@5 P) = hugoots* +
ha20081°02* + Pocoods®

The coefficients of the Taylor series, which will be subseguently required, are calculated
in the form
hseoo = ~—(@2 + 93)/(21), hypor = —1, Rezoo = o/ (291) (1.4)
hosro = 1, Rooge = Pooos =,
k3000 (1/P2 + 1/Bs2)/ (3@1BsPa)y Rizoo = 1/(918:%B3)
hagoo = —Eol(1/B5% + 1/B%)* + 2(1/B,* + 1/B4*))/(120:1B5B5)
hasoo = Eo(3/B: + 1/B:%/(2@1B:%B3):  Powoo = —Eo/(4P1B2%B3)
=+ (i=23)

where the mechanical parameters of the problem are @, @, v (the parameter space is three-
dimensional). The remaining quantities g;=1—@a;— ay, v = E2— @, depend on them. Here
oy is the square of the equatorial semiaxis of the ellipsoid on whose continuation lies the
libration point investigated here /1/, @, is the square of the equatorial semiaxis, a; is
the square of the polar semiaxis (a dependent parameter), and f, is the distance from the
centre of the ellipsoid to the libration point. All the quantities are dimensionless.
Later the following elliptic parameters /1/ will be required:
+
o= S (o + u)y (g + u) (@ + u) (eg + w)]7"yde (i=1.2,3) (1.3
v

The parameter space of the problem is a prime defined by the formula

P = {(a, 0, v): 0u>00>0a+a<t, v>0 (1.6)
The normal oscillation frequencies of plane motion are
05, = {1 — W2 4 g 4+ W2)* — 2hPrph, 0 L wy, < oy (1.7)

8= q2/¢1, b = @3/,

The qualitative results in /1, 2/ enabled us to construct subsequently the exact stability
region and the resonance surfaces (Fig.l). Formulae (1.7) and (1.5) define the mapping Q:
(a1, @y, V)= (w5, wy) of the parameter space II* onto the particular space R, = {(u;, w,): ;>

0,0, 2> 0}.In R,?2 the stability conditions of the system, to a first approximation, have the
form O<ow,<<w;, @+ e <2 (Fig.2) and determine the set X CR,2 We denoteby St=QYI)

the stability region in II®. The length of the arc «,® + w2 =2 correspond to the condition
h=0 or ¢;=0. From the mechanical meaning of the problem it is clear that always g;> 0
(since the quantities a;>0, i=1,2,3). This inequality leads to the relation 02 4+ 0,2 < 2.
The sets that correspond to one another in the mapping @ :H3 —R,2%, are indicated in Figs.l
and 2 by the same numerals. The resonance surfaces ] — ¢(Fig.l) of the first (0wy = 0), second
(0, = ), third (o, = 20,), and fourth order (w, = 3w;) correspond to the resonance straight
lines 7 — 4 (Fig.2). The preimage of double resonance (g, = gy = 0) is the rectilinear interval
5 (Fig.l).

Let us determine the boundary of the stability region StCII® (in topology H?). It
consists of the following: 1l)semi-infinite section 8, (set 1) of the plane a; = @,, bounded
by straight lines: 5; ay =@y =1, a;=a, +v=0and @, = a; = 0 are surface of first-order
resonances, 2) surfaces of second~order resonances S, (set 2); and 3) the interval of double
resonance w; =@, =0. In addition we shall consider surfaces §, and §, of the third-and
fourth-order resonances (the sets 3 and 4 in Fig.l). Obviously Ss C St and S, St. The
stability of the resonance set S, = St\ (S; J 8y will be separately checked. The coordinates
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Fig.2

of the points 6—10 (Fig.l) calculated in H® are
(043 ...;043...:0), (05 0.5; 0.2408...), (0; 1;
6.2308 . . .). (0; 1; 10, 2799...) (0; 1; 19, 0293...).

2. The first-order resonance. The first-
order resonance oocurs only at the boundary of the
stability region to a first approximation and corres-
ponds to the case of the second zero frequency w; = 0.

Hence at the boundary §,, including the interval 5 of
“)//// double resonance, the eguation g=1 holds, from
which ¢; = ¢;. This in turn leads to the conclusion
Fig.l that for the first-order resonance we have an ellip-
soid of revolution with equal equatorial semiaxes
a, = a,. The libration point, if it exists, is not isclated. The relative equilibria occupy
the entire circle of the equatorial plane, and in the inertial frame of reference are solutions
of the equation of motion of a satellite in a circular orbit.

Such solutions are generally Lyapunov unstable, if all phase variables are taken into
account. This is due to the systematic shift along the equatorial orbit longitude. Because
of this, the stability of circular orbits is usually investigated for some of the variables
/3/. In the present paper the stability of the libration point means the stability of the
position of relative equilibrium in a rotating system of coordinates or the stability of
periodic motion over all phase variables.

For example, following /3/ it is possible to check that for any ellipsoid of revolution
there is a shift along the circular orbit longitude. Hence we may conclude that in the case
of a single zerc frequency o, =0 for first-order resonance (also for double resonance
»; = 0, = 0). the libration point in this problem is always unstable.

3. The second-order resonance. We shall carry out a non-linear analysis of the
stability for (a@;. a,, v)& §, as in /4, 5/. The equations of plane moticn in the neighbourhood
of a libration point using local canonical variables may be represented in the form z' = IH,
where z is a four-dimensional vector z = col(g;. ¢, pi, p;).@and I is a simplectic fourth-order
matrix 2= —F. The Hamiltonian function is represented as in (1.2) in the form of the
series

H(z)y=H,(z) + Hs(z) + ...

It can be shown that on surface §, of second-order resonance (the case of equal fre-
quencies w; = @, = ©) the minor A, of the matrix [ (H,),, — iwE (the first row and the fourth
column are deleted) is non-zerc. Hence, when (a,, o, V)& S,, the eigenvalue iw has a non-
prime elementary divisor. According to /4/ by a linear canonical transformation z == NZ (Z = col (@4,
Q. Py, P;) the Hamiltonian function canbe reduced to form such that the homogeneous form of the
lowest order of H, canbe represented as follows: H, (z) = Fy (Z) = (P, + P?)/2 + o (QhPs — Q,F»)

where the frequency is defined by the equation @ = (1 — W2)'". The matrix of simplectic
transformation has the form
N=(@)ij=1,...,4), a, =
—4/(1 + a)r, ay, = 1/(1 — a)’r, a4 = a/(1 + o)’
aer = —a/(l — a)"", ags = —(2—a/{2At — @)t — a)l"}
2 — a/{l(1 — a®(1 + a)I'*}, a5 = a/{2[1 — a®)(1 — @)1}
g = —a/{2l(1 — a®)(A + a)I'n}, a = (h/2)"

£
[

The remaining elements of the matrix N are zerc. The transformed Hamiltonian is defined
by the equation
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FZ)y=FyZ)+Fs@)+..., F@y= 3 [ig;,0iQa"PrhPsh (3.1)
(RN

where F, (Z) are homogeneous forms of power k. By a non-linear normalizing transformation

Zw—{ the Hamiltonian function can be reduced to the form

A®) = 5 (1 + 1) + 0 G — Bamw) + 4 & + 5 + Y Ar®)
k=56

; = col (glv 52: Uiy 7]2)

The following theorem holds /5/: if A4 > (0, the equilibrium position is Lyapunov stable,
and when 4 <« 0, it is Lyapunov unstable.

Formulae obtained in /5/ must be used to calculate the coefficient A. A computer check
showed that for any (a,, @, v) &= S; the quantity A4 > 0, and hence the libration point is
Lyapuncv stable.

4, Third-order resonance. The set in parameter space where resonance relations for
third-order rescnance are satisfied, is non-empty, and as already indicated in Sect.l, is definedby
the equation 83 = Q7 Y(w;, ©g): 0 = 20,}(S; is a surface in space N3).

Like any layer in St defined by the equation

Sinn = QY(01, 0,) 0, = ko, k>1, k= R} (4.1)

the surface §, is projected one-to-one on to the plane of parameter (a;,a,) (in Fig.3 this
projection is shaded). The interpretation of results of stability investigations in cases of
resonance is clear and convenient, since it is possible to talk about this prooperty in terms
of the values of the two equatorial semiaxes of the ellipsoid. We present in the same way
the diagram of the stability and instability regions of the fourth-order resonance. It is
thus possible to judge the stability of the libration point by the form of the ellipsoid.

Later we shall have to study the problem at inner points of the region 8t. At the
boundary of St the investigation has been completed in Sects.2 and 3, since FrSt= 8, &, U
I,,, where I, is the rectilinear interval 5 (Fig.l) of double resonance wi= @; = 0, determined
by relations a; = ay, ({ —c)v +1 = (2 4+ ¢) o;where ¢ is the solution of the equation

[(1 — e)lelr + [e (1 — e)l's = arcetg [e/(1 — )]s
Region St does not contain resonances of the first and second order, and the roots of
the characteristic equation of the first approximation are simple and purely imaginary. Hence

a linear canonical transformation of system (l.1) exists of the form z = NZ that reduces
the quadratic form of expansion (1.2) of the Hamiltonian to the form

Hy @) = H, (NZ) = F, (Z) = 0,(Q¢* + P)2 — o, (Qs2+ P02 (4.2)

(see, e.g., /6/). 1t can be shown that the simplectic matrix N has the form N = (a;;)(i,j =1,
., 4), where only the elements

o
2
®z

o= g

1
/ (0.5;05) ‘ 10.5;0.5)

a4

Fig.3 Fig.4

a3 = (1 — g + o)/ (— 0,B)V", ay = (1 — g + 0,)/(0.B,)"

ay = —2 (—0,/B))'h, ayy, = 2 (0,/By)'":

a5 = (1 + g — 02 (—o/B)", a2 =—(14g— o)X
(03/B,)"

a3 =1 — g — 0}/ (— 0,B)":, a5 = (1 — g — @)/ (93B,)/+

B,=3—-2g—g"+2@—-1)o?—0r (i=1,2)
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are non-zero. The transformed Hamiltonian function is defined by (3.1). We further reduce
the cubic terms in (3.1) to the normal form, * (*See Sect.3, Markeyev A.P, and Sokol'skii A.G.
Some Computational Algorithms for Normalizing Hamiltonian Systems. Moscow. Preprint No.3l,
Inst. Prikl. Matem. AN SSSR, 1976.)

We will transfer complex canonical variables using the formulae

Q, =—(E + im)/lfﬁ, _Px = - (if, + Th)/lf-z- N
Q= —(— &+ iTla)/VZ, Py = — (i — 712)/1/2

Let us obtain the new representation of the Hamiltonian function (its quadratic part)
Fo(Z) = A, (8, n) = i By + {08 To normalize the third-order terms it is necessary to
solve the operator equation DTy = Gy — K, where the differential operator is determined
using the Poisson bracket

2
aA 0 A /]
D=t A=Y (R =T ) Ghw=F@)

=1

where I, is the third-order form in the expansion of the generating function of Lie trans-
formulation in the Hori method, and K;is the normal form of the third-order Hamiltonian

In K, only tl’.le resonance terms K4 (§, 'q) = K o0EMe® + Konola®n, remain, and K 900 = i{foorz — Fosro —
fro)s Kono = iK 00

We obtain the following result /6/. 1f the Hamiltonian function is such that | Kooz | =
[ Kono | %= 0, the libration point is unstable. When |K s | =0 and the conditions of the

Arnold-Moser theorem are satisfied (see Sect.6) {(the third-order resonance does not in this
case impede further normalization}, we have Lyapunov stability.

A computer check showed that e“\it‘:l.‘y“wucl.e on Sa the condition of 1nsta.01ur.y is satisfied,
except along the curve whose projection I is shown in Fig.3. Along that curve the resonance
terms which impede the stability do not exist in the expansion of the Hamiltonian, and the
fourth~order resonance is not satisfied. Hence the normalization required by the Arnold-
Moser theorem /7/ is possible. A check proved that according to that theorem the libration
curve 1 is stable.

5. Fourth-order resonance. Let us investigate the stability of the libration point
of the parameter set §; (see Sect.l). As in Sect.4, we will interpret the results not in I3

but in the (&), %2} plane where the surface §, is projected one-to-one (the shaded region in

Fig.4). when the fourth-order resonance relation e, == 3w, is satisfied (in this problem of
plane motion there is not other resonance of this order) to analyse the stability we have to
reduce H to the normal form up to the fourth order inclusive.

It is assumed that the Hamiltonian function is reduced to the form (3.1}, where F;(Z)
has the form (4.2). BAs noted in Sect.4, this can be done using a suitable linear canonical
transformation.

Let us change to cancnical polar variables, using the formulae

Qn (‘)rl\ in G b, = (2"-:';)"" o8 @ (L =1

9
&

—

(5.1)

[

In the new variables the Hamiltonian has the form

K{ri,re, g1, ¢2) 2.: Ky (rire g1, @), HRo=ou;—wre
K pp= ()20 2 Uk (91, @) (b (m=3,..)

1
KRy

where Uiy, (g, @2} are trigonometric polynomials calculated in terms of respective coefficients
of the forms Fm {(see below). Since there are no third~order resonances, the Hamiltonian has
the following normal form, obtained after the non-linear canonical exchange of variables (ry,
Tar @is Qo) > {01, P2 Uy, o)t H =6, +G, + R+ .... Terms in the expansion of H of order higher
than the fourth are omitted, and

2

Gr = @y, — @y0a, Gy = Caopy® + CrapyPs + Cosps’ (5.2}
The resonance term for commensurability e, = 3w, has the form

R = [4d,55in (§; + 3¢} 4 Bys cos (P, + 3¢a)] (pips")'"

.y S R s A ne L9210 /4 2 LB 2\, mh
Let us determine the quantities g == Lgg -T 0Lz T Ji gz U = g e Wy T Y18 79 -

ing Markeyev theorem holds /6/. If the Hamiltonian of perturbed motion is such that |
the eqguilibrium position is Lyapunov unstable; if however |a |> b, it is Lyapunov st

To verify these conditions it is evidently necessary to determine the coefficients

w
" %
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the functions @, and R. The ccefficients of the rescnance term are calculated using the
following sexies of formulae:

Agg = at¥2 — 0,78, By = 5352 — B8 (5.3}

at® = 2dg (V335 + vaos) -+ 2dae (39502 + 530) + (G — dya) ’Y%"f‘ -
Bai® = 2d0a (6303 4 O1:03) + 2dhe (36557 + 83%3) + (daa— doy ) 635 2
e/, ;,}:}, k.bn,n, + bk,h nymy 6;. ::,An, =—al ,h,au,n, b: Jhbsz, 2
e l 2
Let us determine the quantities d,,, = (m®; — nw,)". The guantities gM% and b™™ are

coefficients of trigonometric polynomials U, {g;. 94 and Upnnd®y, @) respectively. The

formulae used to obtain the coefficients of the form G, are also applicable for normalizing
in the non~resonance case up to the fourth order inclusive. Hence they will be used to check
that the Arnold-Moser conditions in Sect.6 are satisfied. These formulae are

Ch;{" == Coky, 2ks /2 — Yok, ,k,/S (5.4)
Yoo = 3dso (Brso + Pos) + duBrar — s, aBrm + duban
Yoz = 4dyoBlR + 4doyBlss + 4ds, -1 Pray + 4dnBam +

4(2“1.263.}’ + 4d13§3x1’

Yo = 3doy (Br,0s ~t Baos) + droBras — doyabae + diabass
B, ko, = (a2 4 BfMp, B igr == afNa]™ 4 plp)™

The quantities 4,2, b, &, 0, ave the coefficients of trigonometric polynomials U,
U&ﬂs Ull; Uﬂ-

In all equations (5.3} and (5.4} the quantities g/, BA™, cu, o, are explicitly expressed
in terms of the coefficients of the Hamiltonian power expansion by the formulae

a,% = fio0s + forrr — Fraer = fosios 81 = fi300 + forrs —
Fri0a = fosu

= 3fogoo + forom B = — fomo + fons — I
5" = fosor + Hooess 8™ = — Fiavo + fro0s + forn

&% = = fosee + Foroae 1 = 2 {foms + foma)

8% = — fosgy + fooom &% = 2 (fizeo + Froos)

B2 == 2 (fagoy + foomhr @1 = 2 (faroo + Fuzo)

a*® = fra0 — fro0e + Founr a2 = — faoor + foon — Frae
by'% == — fopo + foorr + o @5" = ~— favo + Fmzo + fron
€s0 = 3fgo00 -+ 2030 + 3fo0e0

€22 = 2 {fazge + Fozzo + Frons + Fouzs)

Cos = 3foaoo + Fozer + 3fovee

4% = 3fs000 + Frozer 8% = froze + Hooso

ag®® == — fso00 + froze: 0*° = — faoro + foose

as® = faoo — forze + hhoas D22 = —Jaom + foorr + Frue

The results of a computer check that the conditions of Markeyev's theorem are satisfied
are shown in Fig.4. The instability region {more exactly, its one~to-one preojection on the
plane f{oy, @)} 1is indicated by cross-hatching. To investigate the stability along the curve
separating the instability region from that of stability on the surface §, it is necessary,
in the expansion of the Hamiltonian, terms of power higher than the fourth.

The above analysis shows that when the fourth-order resonance is satisfied in this
problem, loss of stability occurs only when wy<C@,, i.e. when the ellipsoid is oblate. With
the compression increases the libration point remainsg unstable.

6. The non-resongnce case. The set §, corresponds to this case {see Sect.l). Note
that as wv-—» oo this set is not bounded in M3 Since it is three-dimensional, it is con-
venient to, carry cut the analysis on sections of §, by planes v =const {v >0} and observe
the variation of the stability conditions as v changes. The basis of this analysis is the
Arnold-Moser theorem. If there are no resonances up to and including the fourth order, it is
possikle by a suitable canonical change of variables to reduce the Hamiltonian function to
the form

G (p1 pa¥n Yo ) == G2 {01, 02) + G {p1, p2) + kzaGs; {01, P2, Yu, )

where pg, ¥; (i = 1,2} are canonic¢al polar coordinates and the homogeneous forms G, and (G, are
determined by (5.2}, Then, by the Arnold-Moser theorem, the equilibrium position of the
Hamiltonian system (the libration point) is Lyapunov stable, if

Vi, ag, v) = Che0s® + C1y0,05 + Coawy® 5= 0
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A check showed that, when there are no resonances (in region §,) the stability of the
libration point in plane motion occurs at all points S, except at points lying on the suxfécé
T. The set I' is bounded and contained between the sets §; and §; Calculations showed that
on T the function V¥ = {, and that the gquantity ¥ changes its sign on passing through T'. To
investigate the stability on the surface T = {{a;, & ¥): Via, @, v) =0} it is necessary

to use in the power expansion of the Hamiltonian, terms of order higher than the fourth. on
the set [JSn {1 <k<2) the function ¥ 7>0. 1In passing through the surface Sy the third-

order resonance function V changes its sign, and has a discontinuity of the second kind on
S;. In the subregion §, bounded by the surfaces §, and T, the guantity V¥ is negative. Then,
on passing through T, it agairn changes its sign and remains positive in the remaining part
of 8,

An idea of the disposition of I' in §) can be obtained by considering several sections
So™ = {(a,, &3, ¥v'): v/ = v}, Four typical cases are possible, corresponding to four intervals

o o2 &
Z }s H
J ) 4
i
y,
oy 0y Oy
¥4y dg < ¥ <Yy Vg <¥ ¥y
Fig.5

vi Qv vy, v v Vi (i =7,8,9), where v (i =17,8,9 10) are remoteness parameters of

points of H? numbered 7-10 (Fig.l). These cases are represented in Fig.5, where the numerals
1,2 3,4 denote the curves of intersection of §y™ with the surfaces T, §,, Sy Sa, respect-
ively. Note that when ¥ > v, 2and there are no resonance points in sections §; the
section §™M (1 I" is also empty. Thus in plane motion a reasonably remote libration point is
always stable.

The author thanks V.G. Demin for suggesting the problem and for his support, and A.G.
Sokol'skii for the material provided for use in Sect.5.
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